PDA

View Full Version : FYI: Brake Info from a Brake Engineer



Tex Arcana
06-14-2006, 12:46 AM
Blatantly stolen from Brake Info from a Brake Engineer (http://www.genmay.net/showthread.php?p=18403203#post18403203), printed it out and found it to be a very good read. Y'all might get somethign from it. ;)


Blatently stolen from http://www.dtmpower.net/forum/showthread.php?t=73922 I thought I would post it for everyone here to read. No cliffs.

My Website has all this and more, plus downloadable versions in PDF and MS Word.

http://mysite.verizon.net/romano.michael/

Vehicle Brake Information

Michael Romano, Mechanical Engineer

Contents:
Pedal Feel
Brake Performance
Brake Fade
Brake Feel and it’s Benefits
Master cylinder and caliper sizing effect on pedal feel
Stainless Steel Braided Brake Lines
Stopping Force Calculations
Lug Nut Torque Effect on Brakes
Brake Air Ducts
Rear Brake Upgrades
Brake Fluids (information copied from multiple sources)
Brake Bleeding/Flushing
2-Piece rotors
Warped Rotors and The Truth
Cross-drilled and Slotted Rotors
Brake Calipers
Dynamic Brake Control (Panic Brake Assist)
Anti-lock Brake Systems (ABS) (from: http://www.geocities.com/nosro/abs_faq/ )
Glossary (from http://www.stoptech.com)
Mini-Brake Test



Little background on me: I was a brake engineer working at Continental-Teves (trademark: Ate Brakes) and Ford. The info below is meant to give you a better understanding of brakes and many things in it are just for information purpose. I've had a background in racing also, on and off over the years.

3 of the best brake info sites I've ever found (don't agree with everything, but some things are subjective so you can decide what you want)

http://www.stoptech.com/technical/
http://www.geocities.com/nosro/abs_faq/
http://www.dba.com.au/technical.asp

***Pedal Feel***

First some quick definitions: Brake Pedal ratio is the measurement of how much mechanical assistance you are getting from the pedal. Example: a ratio of 4.1 will give you 41 pounds at the booster input rod for a 10 pound load at the pedal itself.

Dead or lost travel is how much pedal stoke is required before you actually start stopping.

Dead Travel or Lost travel and overall poor pedal feel is made up of the following:
[(Travel as measured at the brake service pedal assembly pin (where the booster connects)]
(Imagine traveling from the pedal through the brake system to the rotor, all lost travel must be multiplied by whatever your brake pedal ratio is.)

1. Tolerance between brake pedal pin and booster input rod. This can be quite a bit for systems that use a pin mounted brake light switch. If you do have such a switch do not remove it or take up the slack as your brake lights will be on all the time. If you don't have a pin-mounted switch just get a tighter bushing. If you do, you're out of luck.
* will be felt during first few mm of travel

2. Slack in the brake pedal assembly itself. To see how good or bad yours is, with the car off pump the brakes until hard (2-3 pumps) and then grab the pedal with your hands and see how much it moves around.
* will be felt through first few mm of travel (I hope)

3. Dash flex. This can range dramatically from vehicle model to vehicle model. Not much you can do about this.
*felt during medium and high decelerations stops on most cars, on Fords dashes flex with the breeze

4. Lost travel in booster. This is designed to be there to allow for booster expansion due to climate and use over time. Only adds half an mm (multiplied by the pedal ratio).
*felt only in the first few mm of travel

5. Flex of booster shell. Can be a real problem on some designs. All you can do is try and brace the booster or replace with a better product.
*felt on medium and high deceleration stops

6. Design tolerances in the Master Cylinder. Varies greatly from one to another. Simply, if you want less lost travel in the TMC (tandem master cylinder), you have to pay for a more expensive one. A minimum lost travel of about 1-1.5mm is required for proper and safe operation. However, I've seen some with double that. (Again multiplied by the pedal ratio)
*felt during first 10mm or so of pedal travel

7. The brake tubes and ABS unit. Maybe .0000001mm here. Don't worry about it.

8. Brake hoses. Get steel braided ones, there worth it. Rubber hoses flex quite a bit under pressure.
*felt almost all the time

9. Brake Caliper Piston Roll Back. This is usually the worst offender. Only way to get rid of this is to get better calipers. Roll back is how far the piston moves away from the rotor when pressure is released. The bigger the gap, the more you have to push on the pedal to get contact.

10. Caliper Deflection. The caliper actually flexing under pressure, like 9 you can only improve this with better calipers.
*felt during medium and high deceleration stops


11. Brake pad backing plate. If this is flimsy it will flex and not allow a good contact between the rotor and pad forcing you to apply more pressure and therefore more pedal travel. Fixed by replacing pads with higher quality ones.
*felt most of the time

12. Brake pad material itself. If the material is low density it will compress like a sponge. And if it's a low mu (friction) pad it will require more pressure and therefore more pedal travel.
*felt all the time

13. Rare, but a problem on really cheap brake pads: The bonding process used to bond the brake pad material to the backing plate. A poor process will cause the material to "squirm" around.

Well those are the biggies, but not the biggest. The biggest is AIR in the system. Before you do anything else do a really good and thorough brake bleed. And only use the fluid it says to use on the cap, DOT 3 or DOT 4 or whatever.

Also, changing the brake pedal assembly to one with a lower ratio. Remember all lost travel is multiplied by the pedal ratio, the lower the ratio the less dead travel at the pedal pad. This also firms up the pedal as you're getting less mechanical assistance. Just be careful, because if you're brake booster fails it will take more force on the pedal to come to a stop.

Pedal feel can also be "tuned" with a different booster.

Cut-in is what sets the initial point of boost (when it kicks in)
2-stage (knee height) is what sets how much initial force
Boost ratio is just as it sounds, it sets how much assist you get
Run-out is the maximum assist

By lowering the cut-in and increasing the 2-stage you get a better initial bite sooner. Just have to be careful you don't go overboard and have the driver eat the steering wheel at every stoplight (like an '80s Audi).


***Brake Performance***

Brake Performance: Level of brake torque produced and the resistance to brake torque loss, better known as fade.

For performance I do not use the term stopping distance because that involves more than just the brakes.

I want to make it clear there is a difference between making a brake system feel better and actually perform better.

The stopping distance of a car is not necessarily directly related to the feel. A poor feeling brake system can have very good performance, i.e. Jaguar. While a great feeling system can have lousy performance, i.e. Ford Focus

Basically, you need a bigger rotors and good pads with the best contact patch possible between the two. Also higher friction levels with higher mu brake pads.

And most importantly.........REALLY GOOD TIRES!

And you need a way to get rid of that heat at a faster rate. More rotor mass and/or better conduction (vented, etc.).

How a car stops is simple, it takes Kinetic Energy (energy created by motion) and transfers it to Heat (Thermal) Energy. It does this by the mechanism of friction.

KE=1/2 the mass of the vehicle multiplied by the square of it's velocity

Brake Power is determined by the rate of KE to TE transfer, or also know as WORK.

Simply, to stop sooner you need to transfer Kinetic Energy into Heat Energy faster.

There are no other tricks; you need higher levels of friction and ways to dissipate the heat quicker.

The big things to do to get shorter stopping distance:

1. Best Tires for the conditions (use common sense here, no Pilots in Feb in Alaska)
2. Higher Friction Brake Pads and/or rotors
3. Bigger diameter rotors
4. Calipers with more piston area

The other things you can do that give you that extra advantage:

1. LOSE WEIGHT (the car I mean), less mass, less KE

2. Minimize rotational inertia of wheels/tires. Get lighter wheels and tires (all else being equal). Note: the farther away from the center of rotation the mass is the great the inertia, so a 17" wheel will have greater inertia than a 16" all else being equal.

3. Try and balance out the braking, if the rears can do more work it spreads out the work. Less weight transfer to the front BY MOVING THE BATTERY TO THE TRUNK, stuff like that.

4. Practice! Get to know how your system works so you can best utilize it.

5. Don't drive to fast, remember it the square of the velocity. The amount of KE increase from 40KPH to 80KPH is not 200%, but 400%

Tex Arcana
06-14-2006, 12:49 AM
The formula below is a decent way to estimate what, if any, increase you have in brake torque after an upgrade:

Brake Torque Increase %=

[(caliper piston area new/old) * (effective radius new/old)* (brake pad friction coefficient new/old)]

*effective radius is the distance from the center of the hub to the center of the brake pad

*For sliding calipers multiply the areas by 2

Any answer equal to 1 means no increase. Any answer less than 1 means you've gone backwards. Any answer greater than 1 means a torque increase.

This will NOT give you the actual brake torque, just the difference.

Things like 2-piece rotors, cross-drilling, slotting, cryogenics, heat-treating are all "at limit" technologies. In other words they only make a noticeable difference (if any) at the very limits. If you drive on the street in a manner that actually utilizes these technologies regularly you're probably dead and not reading this!

Brakes are as much art as science, there are just so many different variables involving not only performance but also feel and consumer wants it becomes a real pain!

Again, you have to know what you want to get out of your system and where you're going to use it.

In the end if you got the cash it won't hurt, but you get to a point of diminishing returns and you have to wonder!


***Brake Fade***

Brake fade: the loss of brake torque due to items other than mechanical failure

Basically, fade is caused by over use of the brakes to the point where a majority of the fluid pressure and/or pad friction is lost.

This is caused by heat, as heat is created in the brake system it causes the brake fluid to boil and that introduces air into the system. If enough brake fluid is transformed into a gas you will not be able to create the required brake pressure to stop the vehicle.

On top of this the same heat causing the fluid to boil is also breaking down the pad and dropping its coefficient of friction. This is commonly referred to as pad fade.

To avoid fade is very easy, you can use a fluid with a higher boiling point and/or a pad with a more advantageous temperature vs. coefficient of friction curve. You can also introduce cooling into the system with brake air ducts, vented rotors, rotors with more vent surface area and overall better ventilation in the corner area.

Also, venting built up gases under the pad was a big problem, but pad tech has come so far that it's not something I would worry about (assuming your using race pads for racing). Again it's one of those things that are there but only makes a very, very, very minor difference (if any) most of the time.

***Brake Feel and it's Benefits***

Brake feel: pedal effort and pedal travel for any given desired deceleration. Ease of brake pressure modulation, accuracy and precision of modulation. Feedback through the pedal "describing" pad rotor contact dynamics and pressure fluctuations.


Benefits of "better" feel:

Brake feel is just like steering feel. The better the feel/feedback is the more of the inherent performance you will actually be able to use.

Imagine a car that has 1.0g of lateral grip, but has lousy steering. Too light, completely dead, nothing happens just off-center, poor linear response and too much or too little ratio.

How much of that great 1.0g are you ever going to be actually using with poor steering?

Same with brakes. Improving feel will allow you to better use what you have.

However, it will not objectively increase brake performance. If you are already getting the max out of you system then better feel will not get you more.


Things like steel lines, stiffer calipers affect feel, not performance. Only force applied, torque arm and friction do that. You can change things like lines, calipers, pedals and boosters to change the characteristics. Such as, initial bite point and initial deceleration level, pedal travel and effort, pedal force multiplication. However, these do not actually produce more brake torque.




***What master cylinder and caliper sizing means to pedal feel***

Here is how to calculate mechanical advantage:

Area of MC * pedal ratio = M
Area of front piston= N

ME= M/N = larger is less effort

(MC-master cylinder)
A larger MC results in...
> less pedal travel
> a higher effort pedal
> less hydraulic advantage
> Mushier pedal feel

A smaller MC results in...
> more pedal travel
> a lower effort pedal
> more hydraulic advantage
> firmer pedal feel

As you can see there's more advantage to a smaller bore MC, but some heavy trucks require the fluid only a big bore MC can provide.

Larger caliper piston area results in...
> more pedal travel
> a softer pedal
> more hydraulic advantage

Smaller caliper piston area results in...
> less pedal travel
> a firmer pedal
> less hydraulic advantage






***Stainless Steel Braided Brake Lines***

SS lines will NOT improve braking distance.

What will SS lines do? They will firm up the pedal and will shift the braking pedal feel curve. The later means that you will reach braking force earlier in the pedal stroke than without the SS lines.


Anyway, SS lines do technically firm up the pedal through out the brake pedal stroke. But the difference may not be noticeable all the time.

SS lines almost always make a difference at braking events at or over 0.25g, this is equivalent to the kind of hard braking you see when driving back roads in an aggressive manner. Regular rubber brake hoses will flex initially under high pressure, this is a volume loss that is expressed as dead travel at the pedal.

With SS lines the harder you push on the pedal the more the level of the improvement felt.



***Stopping Force:***

Equations:
(for ease and consistency try and use meters and kg)

1.
stopping force = weight of car * longitudinal coefficient of friction of tires

2.
Stopping Force = pedal force * brake pad coefficient of friction * mechanical force ratio * (1/radius of the tire) * brake rotor effective radius

.....solve for mechanical force ratio

3.
Front Force = weight front + total weight * tire friction * height of CG * (1/wheel base)

4.
Rear Force = weight rear - total weight * tire friction * height of CG * (1/wheel base)

5.
% front = Front Force/Stopping Force

6.
% Rear = Rear Force/Stopping Force

7.
mechanical force ratio front = mechanical force ratio * %front
mechanical force ratio rear = mechanical force ratio * %rear







***Lug Nut Torque***

Over-torque of wheel lug nuts is one of the prime causes of brake rotor distortion. This can lead to permanent warping of the rotors, uneven wear of the rotors and pads and lots of brake chatter (NVH).

With today's very stiff alloy wheels, like from BBS, SSR, Volk, etc., when you torque down the lug nuts the wheel-mounting surface will force what ever it contacts to take its shape. Which means whatever that surface looks like will be what the rotor looks like.

Get a torque wrench and check the torques on every lug nut and make sure they are within the specs (which you should be able to find in your owner's manual). And make sure that every lug nut is torqued down exactly the same. Even if all 5 on a wheel are within specs, not having all 5 be equal will introduce distortion.

And if you think that your light alloy wheel can't possibly be that stiff, you wrong they are MUCH stiffer than the brake rotor or even the hub.

WORD OF CAUTION: Don't assume that torque the lugs to the lowest range in the spec is the best. Try and keep it nominal not at the extremes of the range.

Much of the problems with rotor warp, brake chatter, disk thickness variation can be traced back to over-torque and uneven torqued lug nuts.

After coming back from the shop, get that torque wrench and check the lug nuts yourself.




***Brake Air Ducts***

This is only for auto-x and racing.

Getting all that extra air on the brakes going down a straight gets the brakes nice and cool for the next corner.

Cheap and effective way to keep rotor temperatures down and therefore reduce fade.



***Rear Brakes***

Just want to add a little warning about the rear brakes. Be VERY careful when it comes to making changes back there. Upgrading the rears to increase braking power, not just feel, can be a double-edged knife.


More braking power to the rears will only do you well if; 1. the balance is woefully off and the rears are under-utilized, if you can easily lock-up the rears your already at full potential or 2. you have increased the weight the rear tires carry, the grip of the rear tires and/or minimized the weight transfer to the front.

Putting more powerful brakes on the rear alone do nothing more than cause you to lock up or go into an ABS event sooner. You must increase the rear tires load to benefit from an increase in the rear brakes power. Otherwise, the rears should be looked at only from a "feel" standpoint.
more

Tex Arcana
06-14-2006, 12:52 AM
***Brake Fluids***

Common Brake Fluid Boiling Points

|| Wet Boiling Point || Dry Boiling Point
Castrol SRF || 518°F || 590°F
Earl's HyperTemp 421 || 421°F || 585°F
Motul 600 || 420°F || 593°F
AP-600 || 410°F || 572°F
Neosynthetic 610 || 421°F || 610°F
ATE-Super Blue || 392°F || 536°F
Valvoline || 333°F || 513°F
Castrol LMA || 311°F || 446°F
Earl's HyperTemp 300 || 300°F || 568°F
Ford HD || 290°F || 550°F
Wilwood 570 || 284°F || 570°F
PFC-Z rated || 284°F || 550°F
AP-550 || 284°F || 550°F

All brake fluids absorb moisture, some faster than others (except silicone which is not recommended for anti-lock brake systems). Castrol SRF resists moisture contamination (non-hygroscopic) more than any other fluid we tested; therefore change intervals can be greatly extended. This reduces the effective cost over a season of racing. Many drivers say that they can run the same fluid all year long with only bleeding off the fluid in the calipers for each event. This way a can or two will last all year. Other fluids (hygroscopic type) require additional flushing of the system for each track event to maintain the lowest percentage of moisture and the highest boiling point.

FYI - The Castrol SRF is around $77/container versus $10-15/container for the rest.

Silicone Brake Fluids

Fluids containing Silicone are generally used in military type vehicles and because Silicone based fluids will not damage painted surfaces they are also somewhat common in show cars.

Silicone-based fluids are regarded as DOT 5 fluids. They are highly compressible and can give the driver a feeling of a spongy pedal. The higher the brake system temperature the more the compressibility of the fluid and this increases the feeling of a spongy pedal.

Silicone based fluids are non-hygroscopic meaning that they will not absorb or mix with water. When water is present in the brake system it will create a water/fluid/water/fluid situation. Because water boils at approximately 212º F, the ability of the brake system to operate correctly decreases, and the steam created from boiling water adds air to the system. It is important to remember that water may be present in any brake system. Therefore silicone brake fluid lacks the ability to deal with moisture and will dramatically decrease a brake systems performance.

Brake Fluid and Cold Temps.
Kinematic viscosities: All brake fluids (DOT 3, DOT 4 and DOT 5) must meet a minimum viscosity test of not less than 1.5 centistokes at 100° C (212° F) and must not be more than the following to meet their various classifications (the larger numbers indicate higher kinematic viscosities just like with motor oils).

DOT 3 1500 Centistokes at minus 40° C
DOT 4 1800 Centistokes at minus 40° C
DOT 5 900 Centistokes at minus 40° C
Higher kinematic viscosities means it "flows easier" at the cold temps.
A centistokes is 1 mm^2/s


MINIMAL boiling points for these specifications are as follows:

|| Dry Boiling Point || Wet Boiling Point
DOT 3 || 401ºF || 284ºF
DOT 4 || 446ºF || 311ºF
DOT 5 || 500ºF || 356ºF
DOT 5.1 || 518ºF || 375ºF

Poly Glycol Ether Based Brake Fluids

Fluids containing Poly glycol ethers are regarded as DOT 3, 4, and DOT 5.1. These type fluids are hygroscopic meaning they have an ability to mix with water and still perform adequately. However, water will drastically reduce the boiling point of fluid. In a passenger car this is not an issue. In a racecar it is a major issue because as the boiling point decreases the performance ability of the fluid also decreases.

Poly glycol type fluids are 2 times less compressible than silicone type fluids, even when heated. Less compressibility of brake fluid will increase pedal feel. Changing fluid on a regular basis will greatly increase the performance of the brake system.

FLUID SPECIFICATIONS All brake fluids must meet federal standard #116. Under this standard are three Department of Transportation (DOT) minimal specifications for brake fluid. They are DOT 3, DOT 4, and DOT 5.1 (for fluids based with Polyalkylene Glycol Ether) and DOT 5 (for Silicone based fluids).

Wet vs. Dry Boiling Point

WET BOILING POINT - The minimum temperatures that brake fluids will begin to boil when the brake system contains 3% water by volume of the system.

DRY BOILING POINT - The temperatures that brake fluid will boil with no water present in the system.

How does water get in there?

Water/moisture can be found in nearly all brake systems. Moisture enters the brake system in several ways. One of the more common ways is from using old or pre-opened fluid. Keep in mind, that brake fluid draws in moisture from the surrounding air. Tightly sealing brake fluid bottles and not storing them for long periods of time will help keep moisture out. When changing or bleeding brake fluid always replace master cylinder caps as soon as possible to prevent moisture from entering into the master cylinder. Condensation, (small moisture droplets) can form in lines and calipers. As caliper and line temperatures heat up and then cool repeatedly, condensation occurs, leaving behind an increase in moisture/water. Over time the moisture becomes trapped in the internal sections of calipers, lines, master cylinders, etc. When this water reaches 212º F the water turns to steam. Many times air in the brake system is a result of water that has turned to steam. The build up of steam will create air pressure in the system, sometimes to the point that enough pressure is created to push caliper pistons into the brake pad. This will create brake drag as the rotor and pads make contact and can also create more heat in the system. Diffusion is another way in that water/moisture may enter the system.

Diffusion occurs when over time moisture enters through rubber brake hoses. The use of hoses made from EPDM materials (Ethlene-Propylene-Diene-Materials) will reduce the amount of diffusion OR use steel braided brake hose with a non-rubber sleeve (usually Teflon) to greatly reduce the diffusion process.


DOT what?

DOT: Acronym for "Department of Transportation" -- an American federal agency or "Department of Transport" -- a British agency

DOT 3: This brake fluid has a glycol base. It is clear or light amber in color. Its dry boiling point is 401° minimum and wet boiling point of 284° minimum. It will absorb 1 to 2 percent of water per year depending on climate and operating conditions. It is used in most domestic cars and light trucks in normal driving. It does not require cleaning the system and it can be mixed with DOT 4 and DOT 5.1 without damage to the system. The problem with it is that it absorbs moisture out of the air and thereby reduces its boiling point. It can also damage the paint on a vehicle.

DOT 4: This brake fluid has a borate ester base. It is clear or light amber in color. Its dry boiling point is 446° minimum and wet boiling point of 311° minimum. It is used in many European cars; also for vehicles in high-altitude, towing, or high-speed braking situations, or ABS systems. It does not require cleaning the system and it can be mixed with DOT 3 without damage to the system. The problem with it is that it absorbs moisture out of the air and thereby reduces its boiling point. It can also damage the paint on a vehicle.

DOT 5: This brake fluid generally has a silicone base. It is violet in color. Its dry boiling point is 500° minimum and has no wet boiling point in federal DOT 5 specifications. It is used in heavy brake applications, and good for weekend, antique, or collector cars that sit for long periods and are never driven far. It does not mix with DOT 3, DOT 4, or DOT 5.1. It will not absorb water and will not damage the paint on a vehicle. It is also compatible with most rubber formulations. The problem with it is that it may easily get air bubbles into the system that are nearly impossible to remove, giving poor pedal feel. It is unsuitable for racing due to compressibility under high temperatures. If as little as one drop of water enters the fluid, severe localized corrosion, freezing, or gassing may occur. This can happen because water is heavier and not mixable with silicone fluids. It is unsuitable for ABS.

DOT 5.1: This brake fluid has a borate ester base. It is clear or light amber in color. Its dry boiling point is 500° minimum and wet boiling point of 356° minimum. It is used in severe-duty vehicles such as fleets and delivery trucks, towing vehicles, and racecars. It can be mixed with DOT 3 or DOT 4 without damage to the system. It maintains higher boiling point than DOT 3 or DOT 4 fluids due to its higher borate ester content. It is excellent for severe duty applications. The problem with it is that it costs more than other fluids and there is limited availability. It also absorbs moisture out of the air and thereby reduces its boiling point. It can also damage the paint on a vehicle.

What causes a mushy pedal?

DOT 5 fluid is not hygroscopic, so as moisture enters the system, it is not absorbed by the fluid, and results in beads of moisture moving through the brake line, collecting in the calipers. It is not uncommon to have caliper temperatures exceed 200° F, and at 212° F, this collected moisture will boil causing vapor lock and system failure. Additionally, DOT 5 fluid is highly compressible due to aeration and foaming under normal braking conditions, providing a spongy brake feel.
more

Tex Arcana
06-14-2006, 12:54 AM
***Brake Bleeding/Flushing***

One thing that is ALWAYS true never let the TMC (master cylinder) on an ABS, traction control (TCS) or electronic stability program (ESP) car run dry. You'll never get the air bubbles out again by hand. To be honest there is more than one right way and if you found something that works, why fix what's not broken.

Just FYI-

At the factory this is how it's done. They do it all one shot.

First you mount the Evac-Fill head unit to the reservoir then all air is evacuated from the system, creating a vacuum. Then fluid is forced through the system at high pressure.

Then the car is delivered and people complain about mushy pedal!

Just some more stuff:

I e-mailed a Tech at Ford I used to work with on the proper bleed sequence. Since techs do these all the time and engineers don't I'll take his advice.

This is it:

Doing nearest or most distant doesn't matter. What matters is if the brake system is a diagonal or front-rear system.

Quick definition: diagonal means that one circuit in the master cylinder feeds the front driver's side and the rear passenger side. The other circuit the front passenger's and rear driver's. Both circuits are of equal volume. Front-Rear means that one circuit supplies the front calipers, while the other the rear calipers. The Primary circuit (front caliper circuit) is of greater volume.

All you need to do is make sure you do the circuits together. For instance, on most passenger cars it's a diagonal system. So you want to do the driver's front and passenger's rear together, which you do first is not all that important. But he does agree that the tradition is to do the rear first. Or best to get a friend and do both at the same time. And take your time (he told me to make sure I added this).

Same holds true for the Front-Rear systems. Do fronts together and rears together. Usually only trucks, SUVs and very heavy front bias cars (Ford Crown Vic) have a Front-Rear system.


Just FYI- Diagonal is used so that if one circuit fails the vehicle is still stoppable in a stable manner as at least one front and rear wheel is braking and on opposite sides. Front-Rears are used on heavy, front-bias cars require a lot of volume up front.

ABS Bleeding:
Do 3 normal bleeds and then do
An ABS stop if you still feel that air might be trapped. Then do 1 more
Bleed. The ABS stop would have flushed the air out.








***2-Piece rotors***

I have seen a lot on 2-piece rotors. Some of the information contained in them is correct some is mythical.

Some definitions.

2-Piece rotor: A brake disc rotor that has a separate hat (cap) usually made from a lightweight metal. There are two types of common 2-piece street rotors. One uses a bolted hat and the other a pinned hat (also known as a "floating rotor" design).

The bolted type is just what it sounds like. Usually an aluminum hat bolted to a cast iron rotor. The only real benefit of this design is weight savings. However, weight savings tend to be only 10-20%, all else being equal, but with a 50-75% price increase.


The pinned type has usually stainless steel pins that attach the aluminum hat to the rotors. This allows the rotor to "float" on the pins. The great advantage of this design is that it allows the rotor to move freely. When the rotor expands and contracts there is much less chance of binding or distortion. As you can imagine this cuts down on warping and uneven wear (DTV). The disadvantage of this design is really high costs and increased NVH.


As far as better heat conduction, not really. It does help a bit, buts it's not enough to make it worth the extra cost. The nice think about the weight savings is you can get a larger rotor with out taking a weight penalty.

- It may help keep your wheel bearings cooler.

My opinion:

2 piece floating (pinned) rotor is worth every penny. This is good technology, yeah they cost a ton but they do the job. They keep the rotor even through out operating temperature range and they keep down DTV problems better than anything I've ever seen. Be sure they're the pinned hat type and not the bolted hat type.










***Warped Rotors***


Note: DTV stands for disk thickness variation, caused by uneven rotor wear and/or pad material deposited on the rotor. Pad deposit usually happens when brakes are hot and you let them "sit cool"; you should drive around at slow speeds while your brakes cool.

Warped Rotor:

Cut an imaginary plane through the center of the disc part of the rotor that is parallel to both surfaces of the disc, this is done when rotor is new.

If the rotor is warped this imaginary plane (now part of the disc) will no longer be parallel to a reference plane, that reference plane was also parallel to both surfaces of the disc when the disc was new.

In essence a warped rotor is a rotor that is deformed throughout its thickness.

A rotor with DTV (surface imperfection) issues:

The imaginary plane above is still parallel to the reference plane mentioned in the warped rotor definition, however the two surfaces of the disc are no longer parallel to each other.

Think of 2 identical planks of wood.

1st plank you take a planer to it in a haphazard way to the surface making the surface wavy. This is a surface condition.
You can sand the surface down to get back to a smooth surface.

2nd plank you steam heat and then bend around a steel pipe. This plank is warped. You can sand all you want, but you'll never get it straight again.


You can see why it's so easy to mistake one for the other; on the surface it all looks "warped"

Of course if the rotor is too thin then it can't be "sanded" smooth, but a warped rotor can't be turned no matter how thick it is.



***Cross Drilled and Slotted Rotors***

This part I disagree with somewhat. My comments are in red

Cross-drilled rotors:

Disks that have been drilled through with a non-intersecting pattern of radial holes. The objects are to provide a number of paths to get rid of the boundary layer of out gassed volatiles and incandescent particles of friction material and to increase "bite" through the provision of many leading edges. (This I disagree with: the sole reason for holing is to increase total surface area of the rotor, to increase cooling. The "edge bite" is really irrelevant, and likely so insignificant that it just shouldn't be considered) The advent of carbon metallic friction materials with their increased temperatures and thermal shock characteristics ended the day of the drilled disc in professional racing. They are still seen (mainly as cosmetic items) on motorbikes and some road going sports cars. Typically in original equipment road car applications these holes are cast then finished machined to provide the best possible conditions by which to resist cracking in use. But they will crack eventually under the circumstances described in another section (see Cracking). Properly designed, drilled discs tend to operate cooler than non-drilled ventilated discs of the same design due the higher flow rates through the vents from the supplemental inlets and increased surface area in the hole. That's right, inlets, the flow is into the hole and out through the vent to the OD of the disc. If discs are to be drilled, the external edges of the holes must be chamfered (or, better yet, radiused) and should also be peened. THe only place one sees holed discs in racing are in series where they have to use steel rotors of a limited size. Also, the holes MUST BE CAST IN PLACE to limit crack initiation and propagation. Finish machining will interrupt the grain structure, and give rise to cracking. In truth, in a street/autocross/light track situation, holed discs really do'nt give you any advantage--best spend your time and money on good pads, cooling, and perhaps calipers. Oh, and brake fluid.

Slotted:

Shallow, sharp edged but radiused bottom grooves milled into cast iron discs to provide leading edges for bite and a path for the fire band of gases and incandescent friction material to be dissipated through. If the slots fill up with pad material, the system is operating at too high a temperature.

For the track they work. Not as dramatically as the ads will lead you to believe, but they do a good job of keeping the pad surface "clean" when they get really hot and they do a good job of venting gases. Again though, with modern pads neither of the issues mentioned are that severe now a days.
Slotting is for controlling pad outgassing, which can create a boundary layer of gas pushing the pads off the rotor, and causing brake fade. The edges of the slots really shouldn't cut into the pad, because that will shorten pad life. In fact, I would think that the edges of the slots should be radiused, to help eliminate that "scraping" action. And, agian, in a street applicaiton, they really don't help much, unless you have a really crappy set of pads that outgass alot (ate alot of beans?))
more

Tex Arcana
06-14-2006, 12:54 AM
***Brake Calipers***

The caliper's basic function is to force the pads against the rotor. A caliper is made of 3 basic groups, the housing (body), the pistons and the mounting bracket. The pistons sit in the housing and are the components that directly push the pads against the rotor. The housing is there basically to hold and flow fluid to the pistons and give the piston somewhere to live.

There are 2 families of calipers, the sliding caliper and the fixed caliper:
The sliding caliper is by far the most common and is mostly likely what's on your car. It has pistons only on the inboard side and the caliper slides on guide pins to force the outside pad against the rotor.


The fixed caliper has a single (monobloc) or 2 piece bolted housing and piston(s) on both the outboard and inboard side. The caliper is completely stationary and each side applies pressure to the pads independently.


What's the difference? The major differences between the fixed and sliding calipers is weight and stiffness. A fixed caliper in general weighs less and has significantly less flex. This means better pedal feel. Fixed calipers also tend to have a lower profile allowing a larger rotor in the same wheel. Advantage of a sliding caliper is cost, they are usually much less expensive.

Single piston and multi-piston Calipers:
Most sliding calipers are of the single piston type, which means one large piston does all the work. Dual-piston calipers are becoming more popular. Most fixed calipers are 4 piston type, 2 pistons on each side. There are 2 piston fixed and some go as high as 8 pistons total.

The advantages of multiple pistons is:
1. More piston area more force on pad and you can fit more piston in any given rectangle with smaller diameter pistons (like engine valves in the heads).

2. A lower profile caliper as 2 small pistons have a "lower height" than one big piston. This means less flex since the distance from the point of application to the bridge (top strap) of the caliper is less.

More pistons usually adds more cost and low force braking feel is softer.

***Dynamic Brake Control****

Is a "Panic Assist Feature" what it does is measure the velocity of pedal travel by using either a sensor on the pedal or in the booster. If a certain threshold is met then the booster (if it's an electronic booster) or the DSC pump will apply max pressure. It doesn't actually stop the car in any shorter distance than you could.

The reason for DBC is that it's been established than many people when emergency braking will ease off the brake pedal a little after the initial stab. DBC keeps the pressure up even if you let off. This can be a real pain when your trying to modulate the brakes yourself as most systems have a pretty low threshold and just aggressive braking is seen as a "panic stop."

This feature also requires a functioning ABS, the expensive systems are electronic so if the ABS fails the feature is disabled, but some cheaper cars have a purely mechanical system and a failed ABS is not detected. You can imagine what happens when you have max brake power and no ABS.


***Dynamic Brake Control***

Is a "Panic Assist Feature" what it does is measure the velocity of pedal travel by using either a sensor on the pedal or in the booster. If a certain threshold is met then the booster (if it's an electronic booster) or the DSC pump will apply max pressure. It doesn't actually stop the car in any shorter distance than you could.

The reason for DBC is that it's been established than many people when emergency braking will ease off the brake pedal a little after the initial stab. DBC keeps the pressure up even if you let off. This can be a real pain when your trying to modulate the brakes yourself as most systems have a pretty low threshold and just aggressive braking is seen as a "panic stop."

This feature also requires a functioning ABS, the expensive systems are electronic so if the ABS fails the feature is disabled, but some cheaper cars have a purely mechanical system and a failed ABS is not detected. You can imagine what happens when you have max brake power and no ABS.


Anti-lock braking

Please go to this website:

http://www.geocities.com/nosro/abs_faq/


It’s worth your time, Thank You
done

dboat
06-14-2006, 06:36 PM
sorry, my ADD kicked in after three sentences.. my attention span is lower than a freshman in college..
Dana

Tex Arcana
06-14-2006, 08:14 PM
sorry, my ADD kicked in after three sentences.. my attention span is lower than a freshman in college..
Dana

That's why I had to print it and take it with me to the "library", nee' the bathroom. The only place where I can sit down and read in relative quiet. :d

dboat
06-14-2006, 08:51 PM
That's why I had to print it and take it with me to the "library", nee' the bathroom. The only place where I can sit down and read in relative quiet. :d


+1:tu:

I resemble that remark

Tex Arcana
06-14-2006, 09:40 PM
+1:tu:

I resemble that remark

You should see the magazine collection.. it's time to set fire to it and make room for more... :d